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Front Matter Preface

Introduction

In Algebra II, we study the algebraic structures of groups and rings. We previously defined quotient
groups for abelian groups in MA136 Intro to Abstract Algebra, but we now extend this to general groups
using the notion of normal subgroups. We then prove the isomorphism theorems for general groups,
before proving the corresponding theorems for rings.

Disclaimer: I make absolutely no guarantee that this document is complete nor without error. In
particular, any content covered exclusively in lectures (if any) will not be recorded here. This document
was written during the 2022 academic year, so any changes in the course since then may not be accurately
reflected.

Notes on formatting
New terminology will be introduced in italics when used for the first time. Named theorems will also be
introduced in italics. Important points will be bold. Common mistakes will be underlined. The latter
two classifications are under my interpretation. YMMV.

Content not taught in the course will be outlined in the margins like this. Anything outlined like this
is not examinable, but has been included as it may be helpful to know alternative methods to solve
problems.

The table of contents above, and any inline references are all hyperlinked for your convenience.

Scalars are written in lowercase italics, c, or using Greek letters.

Vectors are written in lowercase bold, v, or rarely overlined, ←→v , where more contrast or clarity is
required.

Matrices are written in uppercase bold, A.

Note: transformations represented by matrices may be written in just italics, as functions often are, i.e.,
s(v) = Av.

History
First Edition: 2023-05-15∗

Current Edition: 2023-05-18

Authors
This document was written by R.J. Kit L., a maths student. I am not otherwise affiliated with the
university, and cannot help you with related matters.

Please send me a PM on Discord @Desync#6290, a message in the WMX server, or an email to War-
wick.Mathematics.Exchange@gmail.com for any corrections. (If this document somehow manages to
persist for more than a few years, these contact details might be out of date, depending on the main-
tainers. Please check the most recently updated version you can find.)

If you found this guide helpful and want to support me, you can buy me a coffee!

(Direct link for if hyperlinks are not supported on your device/reader: ko-fi.com/desync.)

∗Storing dates in big-endian format is clearly the superior option, as sorting dates lexicographically will also sort dates
chronologically, which is a property that little and middle-endian date formats do not share. See ISO-8601 for more details.
This footnote was made by the computer science gang.
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MA249 0.1 Glossary of Common Groups & Sets

0.1 Glossary of Common Groups & Sets
• Dn (the dihedral group) - the group of isometries on a regular n-gon. |Dn| = 2n.

• Z/nZ - set of integers mod n under addition, or possibly multiplication if n is prime∗.

• Nth roots of unity - solutions of zn = 1 over the complex numbers under multiplication, sometimes
denoted Un, though this is non-standard notation.

• S1 or T (the circle group) - the set of complex numbers with magnitude 1 under multiplication.

• Map(X) - the set of functions from a set, X, to itself.

• Sym(X) - the group of bijections from a set X to itself, isomorphic to Sn.

• Sn (the symmetric group) - the group of permutations of n points. |Sn| = n!.

• An (the alternating group) - the group of even permutations of n points. |An| = n!
2 .

• Mm×n(R) is the group of matrices with real entries. Mm×n(Z), etc., are defined similarly.

• GLn(R) (the general linear group) is the group of n× n matrices with non-zero determinants and
real entries, under matrix multiplication.

• SLn(R) (the special linear group) is the group of n × n matrices with unit determinant and real
entries, under matrix multiplication.

• SL2(Z) (the modular group) is the group of 2 × 2 matrices with unit determinant and integer
entries, under matrix multiplication.

• SOn(R) (the special orthogonal group) is the group of n × n rotation matrices under matrix mul-
tiplication.

1 Review

A group, (G,∗) is a set, G, equipped with a binary operation, ∗ : G ×G → G, that obeys the following
axioms:

• ∀a,b ∈ G, a ∗ b ∈ G (closure);

• ∀a,b,c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c (associativity);

• ∃e ∈ G such that ∀a ∈ G, a ∗ e = e ∗ a = a (existence of identity);

• ∀a ∈ G,∃(a−1) ∈ G such that a ∗ (a−1) = (a−1) ∗ a = e (existence of inverses).

We can also write idG for the identity for clarity (and also to mark which group the identity is from). If
the operation is additionally commutative, that is, ∀a,b ∈ G, a ∗ b = b ∗ a, then the group is abelian.

Example.

• Z, Q, R, C, any ring R, and any field K form an (abelian) group under addition.

• The set of non-zero elements of a field K, K∗ = K \ {0K}, forms a group under multiplication.

We define multiplicative notation for groups as follows:

• The group operation is omitted, so a ∗ b is written as ab;

• The identity is often written as 1 or 1G, instead of e or id;

∗The groups (Zn/Z,+) and (Z,+n) are technically slighly different, though they are isomorphic. The set underlying the
first group contains congruence classes with modularity built into the elements themselves, while the set underlying the
second group is just the integers, and the modularity is built into the operation instead.
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MA249 1.1 Basic Properties

• If n ∈ N, then an = a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸
n

;

• If n = 0, an = 1G;

• If n is a negative integer, an = (a−n)−1;

• (a−1)n = a−n;

• (am)n = amn;

• (am)(an) = am+n;

• If the group is abelian, (ab)n = (an)(bn).

Abelian groups are more commonly written in additive notation:

• The group operation is written as +;

• The identity is often written as 0 or 0G, instead of e or id;

• If n ∈ N, then na = a+ a+ · · ·+ a︸ ︷︷ ︸
n

;

• If n = 0, na = 0G;

• The inverse of g is written as −g instead of g−1.

• If n is a negative integer, na = −n(−a);

• n(−a) = −na;

• n(ma) = (m× n)a;

• (ma) + (na) = (m+ n)a;

• If the group is abelian, n(a+ b) = na+ nb.

1.1 Basic Properties
Theorem (Cancellative Property). Let G be a group and let a,b,g ∈ G. Then,

(i) ga = gb→ a = b;

(ii) ag = bg → a = b.

Proof. For (i),

ga = gb

g−1(ga) = g−1(gb) [Existence of inverses]

(g−1g)a = (g−1g)b [Associativity]
idG a = idG b

a = b [Identity]

(ii) is proved similarly by right multiplying by g−1. ■

In future proofs, we will omit brackets and not explicitly refer to associativity to save space.

Lemma (Uniqueness of Identity). The identity of a group is unique.

Proof. Suppose e and f are identities of a group, G. ef = e, as f is the identity. But ef = f , as e is
also the identity, so ef = e = f , so e = f and the identity is unique. ■
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MA249 1.2 Order

Lemma (Uniqueness of Inverse). Every element of a group has a unique inverse.

Proof. Suppose a and b are both inverses of g, so ga = idG = gb. By the cancellative property, a = b. ■

Lemma (Two-Sided Identity). If eℓ is a left identity for a group G – that is, eℓg = g for all g ∈ G –
and er is a right identity for G, then eℓ = er = idG.

Proof. eℓer = er as eℓ is a left identity, and eℓer = eℓ as er is a right identity, so eℓ = eℓer = er = idG. ■

Lemma (Two-Sided Inverse). If ℓ is a left inverse for an element g – that is, ℓg = idG – then ℓ is the
(two-sided) inverse of g. Similarly, if r is a right inverse for g, then it is a (two-sided) inverse of g.

Proof. ℓg = idG as ℓ is a left inverse of g, so,

ℓg = idG

ℓg = g−1g

ℓgg−1 = g−1gg−1

ℓ = g−1

As the choice of ℓ was arbitrary, all left inverses of g are equal. The proof for right inverses is similar. ■

Theorem (Distribution of Inverse). For all a,b ∈ G, (ab)−1 = b−1a−1.

Proof.

(ab)−1ab = idG

(ab)−1abb−1 = idG b
−1

(ab)−1a = b−1

(ab)−1aa−1 = b−1a−1

(ab)−1 = b−1a−1

■

1.2 Order
Let (G, ∗ ) be a group. The cardinality of the underlying set G is called the order of the group, denoted
|G|.

Let g ∈ G. The order of g, denoted |g| or o(g) is the least integer n > 0 such that gn = idG. If no such
n exists, then g has infnite order and we write |g| =∞.

Note that if g has infinite order, then gi ̸= gj for all i ̸= j, or else if gi = gj for some i < j, then
gj−i = idG by the cancellative property, so the order of g divides j − i and is hence finite. Similarly, if g
has finite order n, then gi ̸= gj for all i ̸= j ∈ [0,n].

Lemma 1.1. |g| = 1 if and only if g = idG.

Proof. id1G = idG. Conversely, for all idG ̸= g ∈ G, g1 = g ̸= idG. ■

Lemma 1.2. If |g| = n, then gk = 1 if and only if n|k.
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MA249 1.3 Morphisms

Proof. Suppose n ∤ k, so k = qn+ r for some q,r ∈ N with 0 < r < n (by the division algorithm). Then,

gk = gqn+r

= (gn)qgr

= idqG g
r

= gr

and since 0 < r < n, gr ̸= gn = idG.

Conversely, suppose n|k so k = qn. Then,

gk = gqn

= (gn)q

= idqG
= idG

■

Theorem 1.3. For every g ∈ G, |g| divides |G|.

Proof. Follows from Lagrange’s theorem (§ 1.10). ■

Theorem 1.4. If |G| = n, then gn = 1 for all g ∈ G.

Proof. Let a be the order of g, so ga = 1. By Lagrange’s theorem, a divides n, so n = ab for some integer
b. So, gn = gab = (ga)b = 1b = 1. ■

1.3 Morphisms
A homomorphism between two groups (G, ∗ ) and (H, · ) is a function ϕ : G → H such that ϕ(a ∗ b) =
ϕ(a) · ϕ(b) for all a,b ∈ G.

Note that this necessarily requires that ϕ(idG) = idH
∗ as,

idH · ϕ(g) = ϕ(g)

= ϕ(idG ∗ g)
= ϕ(idG) · ϕ(g)

so idH = ϕ(idG) by the cancellative property.

An injective homomorphism is also called a monomorphism, and a surjective homomorphism is called an
epimorphism.

If the inverse of a homomorphism is a homomorphism, or equivalently, if the homomorphism is a bijection,
then it is called an isomorphism. If an isomorphism exists between G and H, we say that G and H are
isomorphic, and we write G ∼= H to denote this relation. It is easy to check that isomorphism is an
equivalence relation.

Lemma 1.5. If ϕ : G→ H is an isomorphism, then ϕ(g−1) = ϕ(g)−1 for all g ∈ G.

∗In fact, mapping identities to identities is a requirement for homomorphisms between more general objects such as ring
homomorphisms (as we will see later), or categorical functors. For groups, identities being preserved just happens to be
implied by the operation compatibility requirement, so it is omitted from our definition.
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MA249 1.4 Subgroups

Proof. For all g ∈ G,

idH = ϕ(idG)

= ϕ(gg−1)

= ϕ(g) · ϕ(g−1)

so ϕ(g−1) is the inverse of ϕ(g) in H, giving ϕ(g−1) = ϕ(g)−1. ■

Theorem 1.6. If ϕ : G→ H is an isomorphism, then |g| = |ϕ(g)| for all g ∈ G.

Proof. If |g| is infinite, then gk is distinct for all k ∈ Z. Then, ϕ(gk) = ϕ(g)k must also be distinct for
all k ∈ Z, so |ϕ(g)| is infinite.

Conversely, suppose n = |g| is finite.

ϕ(g)n = ϕ(gn)

= ϕ(idG)

= idH

so |ϕ(g)| ≤ n = |g|. Now, let m = |ϕ(g)|, so

ϕ(gm) = ϕ(g)m

= idH

= ϕ(idG)

and since ϕ is an isomorphism, it is injective, so gm = idG and hence |ϕ(g)| = m ≤ |g|. Then,

|ϕ(g)| ≤ |g| ≤ |ϕ(g)|

so |ϕ(g)| = |g|. ■

1.4 Subgroups
Let (G,∗) be a group, and let H be a subset of G. Furthermore, suppose that (H,∗) is also a group.
(H,∗) is then a subgroup of (G,∗).

To show that a subset H ⊆ G is a subgroup of G, it suffices to show that H is non-empty, is closed under
∗, and that every element has an inverse in H.

Theorem (Two-Step Subgroup Test). If (G,∗) is a group and H ⊆ G, then (H,∗) is a subgroup of G if
and only if,

(i) H ̸= ∅;

(ii) a,b ∈ H → a ∗ b ∈ H;

(iii) a ∈ H → a−1 ∈ H.

Proof. Every subgroup H clearly fulfils these three conditions for the forward implication.

For the reverse implication, we verify the four axioms. Closure is given by the condition (ii), while
associativity is inherited from the main group, as the operation in H is just the restriction of the
operation in G. The existence of an inverse element follows from condition (iii). The existence of the
identity element follows from taking a,b to both be the identity in condition (ii), or by taking b to be
a−1. ■
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MA249 1.5 Cyclic Groups

The test is named the two-step test because H is often assumed to be non-empty, so the first condition
need not be checked.

This suggests a shorter test still:

Theorem (One-Step Subgroup Test). If (G, ∗ ) is a group and H ⊆ G, then (H, ∗ ) is a subgroup of G
if and only if,

1. H ̸= ∅;

2. a,b ∈ H → ab−1 ∈ H;

Proof. Every subgroup H clearly fulfils these three conditions for the forward implication.

For the reverse implication, we verify the four axioms. Associativity is again inherited from the main
group.

Since H is non-empty, there exists an element x ∈ H. Taking a = x and b = x gives x ∗ x−1 = idG ∈ H,
so the identity element is in H.

Inverses follow from taking a = idG and b = x, giving idG ∗ x−1 = x−1 ∈ H.

Let x,y ∈ H. Then, as inverses exist, y−1 ∈ H, and so we may take a = x and b = y, giving
x ∗ (y−1)−1 = x ∗ y ∈ H, and hence H is closed. ■

Theorem 1.7. The following results hold for all groups:

(i) The intersection of two subgroups is also a subgroup.

(ii) The union of two subgroups is generally not a subgroup.

(iii) The group itself, G, and the trivial group, {idG}, are always subgroups of G.

Proof. (i) Let H ≤ G and K ≤ G. idG ∈ H and idG ∈ K, so H ∩K is non-empty as it also contains
idG. Since H ≤ G, xy−1 ∈ H for all x,y ∈ H, and similarly for K. Suppose a,b ∈ H ∩K so a,b ∈ H
and a,b ∈ K. Then, ab−1 ∈ H and ab−1 ∈ K, and hence ab−1 ∈ H ∩K, so H ∩K is a subgroup by the
one-step test. ■

Any subgroup not equal to G is a proper subgroup, while any subgroup not equal to {idG} is a non-trivial
subgroup.

Let S ⊂ G be a set of elements of G. H = ⟨S⟩ is then defined to be the minimal group that contains
all of S. That is, there are no subgroups of H that contain every element of S. S is then called the
generating set of H, or equivalently, we say that H is generated by S.

If S = {g} is a singleton set, then H = ⟨S⟩ = ⟨g⟩ is given by {gn|n ∈ N} = {· · · ,(g−2),g−1,1,g,g2,g3, · · · }.
If g ∈ G, then ⟨g⟩ is a subgroup of G. It is obvious from the definition that |⟨g⟩| = |g|.

1.5 Cyclic Groups
A group G is cyclic if there exists an element g ∈ G such that G = {gn : n ∈ Z}, and we say that g is
a generator of G, or that G is generated by g. (So cyclic groups are a special case of generated groups
from the previous section, where |S| = 1.)

A generator is not necessarily unique. For instance, Z is generated by both 1 and −1, and Z/pZ with p
prime is generated by every non-identity element.

Lemma 1.8. In an infinite cyclic group, every generator has infinite order. In a finite cyclic group of
order n, every generator has order n.

We write Cn for the finite cyclic group of order n.
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MA249 1.5 Cyclic Groups

Theorem 1.9. Every infinite cyclic group is isomorphic to the group of integers under addition.

Proof. Suppose (G,×) is an infinite cyclic group with generator g. Define the map ϕ : (Z,+) → (G, · )
by n 7→ gn.

ϕ(a+ b) = ga+b

= ga · gb

= ϕ(a) · ϕ(b)

so ϕ is a homomorphism. Then, as G has infinite order, so does g and hence ga ̸= gb for all a ̸= b, so ϕ
is injective. As G is cyclic, every element can be written in the form gn for some n ∈ Z, which is exactly
the statement of surjectivity for ϕ. It follows that ϕ is an isomorphism. ■

Corollary 1.9.1. Any two infinite cyclic groups are isomorphic.

Proof. As G was arbitrary, all infinite cyclic groups are isomorphic. ■

Theorem 1.10. Any two cyclic groups of equal order are isomorphic.

Proof. Let G and H be cyclic groups of finite order k with generators g and h, respectively. Define the
map ϕ : G→ H by gn 7→ hn. This map is clearly bijective by construction.

Let a,b ∈ G. As G is cyclic, a = gs and b = gt for some integers s,t.

ϕ(ab) = ϕ(gsgt)

= ϕ(gs+t)

= hs+t

= hsht

= ϕ(gs)ϕ(gt)

= ϕ(a)ϕ(b)

so ϕ is a homomorphism, and is hence an isomorphism. ■

Theorem 1.11. Cyclic groups are abelian.

Proof. Let G = ⟨g⟩ and let a,b ∈ G. Then,

ab = gngm

= gn+m

= gm+n

= gmgn

= ba

by associativity. ■

Theorem 1.12. If a group G has prime order p, then it is cyclic. That is, G ∼= Cp.

Proof. |G| ≥ 2 as p ≥ 2 is prime. Let g ∈ G \ {idG}. As g ̸= idG, |⟨g⟩| > 1. By Lagrange’s theorem, |⟨g⟩|
divides |G| = p, but p is prime, so |⟨g⟩| = |G|, and hence ⟨g⟩ = G. ■
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MA249 1.6 Permutation Groups

1.6 Permutation Groups
If X is any set, then the collection of permutations on X has group structure under composition. This
group is called the symmetric group on X, and is denoted Sym(X).

It doesn’t really matter what the elements of X actually are, since they just label the inputs and outputs
of the functions we’re interested in, so the structure really only depends on the cardinality of X:

Theorem 1.13. Suppose |X| = |Y | for two sets X and Y . Then, Sym(X) ∼= Sym(Y ).

We then write Sym(n) or Sn for the symmetric group on n elements.

1.7 Dihedral Groups
Let P be a regular n-sided polygon in the plane with n ≥ 3. The collection of isometries on P has group
structure under composition. This group is called the dihedral group of order 2n, and is denoted Dn.

These isometries consist of:

(i) n rotations through the angles 2πk/n for 0 ≤ k < n;

(i) n reflections.

We label the vertices of P in order and consider these isometries as permutations on these vertices.
Then, the rotations are the elements ak, 0 ≤ k < n, where a = (1,2, . . . ,n) is the cyclic permutation
corresponding to the rotation by 2π/n, and the reflections are the elements akb, 0 ≤ k < n, where
b = (2,n)(3,n− 1)(4,n− 2) . . . is the reflection that passes through the vertex 1.

In all cases, we have ba = an−1b = a−1b, so bak = an−kb = a−kb for 0 ≤ k < n. This allows us to find
the full Cayley table of this group expressed in this form as we can then perform any of the four basic
types of products:

(i) (ak)(al) = ak+l

(ii) (ak)(alb) = ak+lb

(iii) (akb)(al) = ak(bal) = aka−lb = ak−lb

(iv) (akb)(alb) = ak(bal)b = aka−lbb = ak−l

with all exponents taken modulo n.

1.8 Permutation Notation
We write permutations in Sn in cycle notation.

Let A1,A2,A3, · · · ,Am be distinct elements of {1,2, · · · , n}. The cycle, (A1,A2,A3, · · · ,Am) means that
A1 is mapped to A2, A2 to A3, · · · , Am−1 to Am and Am to A1, and any elements not in the cycle are
fixed in place.

The number of elements in the cycle is the length of the cycle. A cycle of length 2 is additionally called
a transposition.

So, in S5, the cycle of length 3, (1,4,5) would map the ordering [1,2,3,4,5] to [5,2,3,1,4].

Cycles are equivalent up to circular shifts, so, for example, (1,2,3) = (3,1,2) = (2,3,1) as in all 3 cases,
the cycle represents the mappings 1 7→ 2, 2 7→ 3, and 3 7→ 1.

Two cycles are disjoint if they do not contain any numbers in common. Disjoint cycles additionally
commute.

To invert a permutation given as a product of not necessarily disjoint-cycles, reverse each cycle, then
reverse the order of cycles.
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Example. Let ρ = (1,12,7,4)(3,8,10)(9,5,6,2,11). What is ρ−1?

Reverse the cycles to get (4,7,12,1)(10,8,3)(11,2,6,5,9), then reverse the order of cycles, giving ρ−1 =
(11,2,6,5,9)(10,8,3)(4,7,12,1).

In this case, the cycles are all disjoint, and therefore commute, so the final step wasn’t strictly necessary.
However, it is required for inverting non-disjoint cycles.

1.9 The Alternating Group & Transpositions
Theorem 1.14. Every permutation can be written as a product of transpositions.

Proof. Every permutation can be written as a product of disjoint cycles, so it suffice to show that cycles
can be written as products of transpositions. Then, (A1,A2,A3, · · · ,Am) = (A1,Am) · · · (A1,A3)(A1A2)

■

Example.
(1,2,3,4,5) = (1,5)(1,4)(1,3)(1,2)

Note that these transpositions are not disjoint, and do not commute. Furthermore, the transposition
decomposition of a permutation is not unique.

Every permutation can be written as a product of an even number of transpositions, or an odd number
of transpositions, but crucially, not both.

A permutation is even if it can be written as a product of an even number of transpositions, and similar
for odd.

The alternating group Alt(X) on a set X is the set of even permutations on X under composition. As
with Sym(X), the isomorphism classes of the alternating groups depend only on the cardinality of X, so
we write Alt(n) or An for the alternating group on n elements.

An is a clearly a subgroup of Sn as we can write An = {σ ∈ Sn : σ is even}, and it has order n!
2 .

1.10 Cosets
Let G be a group, H be a subgroup of G, and g be an element of G. The set gH = {gh : h ∈ H} is a
left coset of H, and Hg = {hg : h ∈ H} is a right coset of H. In the case of abelian groups written in
additive notation, we denote the coset by g +H rather than gH.

A coset of a subgroup has the same order as the subgroup, as inverses are unique.

Theorem 1.15. The following statements are equivalent for all g,k ∈ G:

(i) k ∈ gH

(ii) gH = kH

(iii) gk−1 ∈ H

Corollary 1.15.1. Two left cosets g1H and g2H in G are either equal or disjoint.

Proof. If g1H and g2H are not disjoint, then there exists some element k ∈ g1H ∩ g2H. But then
g1H = kH = g2H by the above theorem. ■

Example. 2Z is a subgroup of Z. What are the left cosets of 2Z in Z?
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First, pick an element of Z. Let’s pick 0. Add it to every element of 2Z:

0 + 2Z = {· · · ,0 + (−2),0 + (0),0 + (2), · · · } = 2Z

so 2Z is a left coset of 2Z in Z.

Now, let’s pick 1 and add it to every element of 2Z:

1 + 2Z = {· · · ,1 + (−2),1 + (0),1 + (2), · · · }

This is distinct from the previous set, so this is a new coset.

Now, if we try 2 or anything else, we’ll find that we just land in one of our two previous cosets. In fact,
these two cosets partition Z, so we know we have them all. Thus, the left cosets of 2Z in Z are 2Z and
1 + 2Z.

Lemma 1.16. If H is finite, then all left cosets have exactly |H| elements. That is, |gH| = |H| for all
g ∈ G.

Proof. The map ϕ : H → gH defined by ϕ(h) = gh is a bijection by the cancellative property. ■

Let G be a group and H be a subgroup of G. The index [G : H] is defined to be the number of left
cosets (or right cosets, but not counting both) of H in G.

Example. What is the index [Z : 2Z]?

In the previous part, we found two cosets, so [Z : 2Z] = 2.

Theorem (Lagrange). If H is a subgroup of a group G, then |G| = [G : H]|H|.

Proof. Let H be a subgroup of a group G, and define an equivalence relation R on all pairs of elements
x,y ∈ G such that xRy holds if and only if there exists h ∈ H such that x = yh. Under this equivalence
relation, the left cosets of H in G are equivalence classes, and therefore partition G into disjoint sets. The
mapping x 7→ ax is inverted by y 7→ a−1y, and therefore defines a bijection H → aH, so each left coset
aH has the same cardinality as H. The number of left cosets is the index, [G : H], so |G| = [G : H]|H|,
as required. ■

If the index and sizes of each set are interpreted as cardinal numbers, Lagrange’s theorem holds even if
some of the sets are infinite in size.

Corollary (Lagrange). The order of any element a of a finite group divides the order of the group. Or
equivalently, the order of any subgroup of a group divides the order of the group.

2 Normal Subgroups

A subgroup N of a group G is normal in G if gN = Ng for all g ∈ G, and we write N ◁G to denote this
relation.

For any group, G, the trivial subgroup, {idG}, is always a normal subgroup of G. G itself is also always
a normal subgroup of G. If these are the only normal subgroups, then G is a simple group.

Theorem 2.1. If H is a subgroup of a group G such that [G : H] = 2, then H is normal in G.

Proof. Since H has index 2, it has exactly two left cosets; H itself, and G \H. H also has exactly two
right cosets; H, and G \H. Thus, the left and right cosets of H coincide and H is normal. ■
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We give an alternative characterisation of normal subgroups:

Theorem 2.2. If H is a subgroup of a group G such that ghg−1 ∈ H for all g ∈ G and h ∈ H, then H
is normal in G.

That is, a subgroup N of a group G is normal if and only if it is invariant under conjugation (§4.2). That
is, the conjugation of any element of N by any element of G is always in N ; ghg−1 ∈ H for all g ∈ G
and h ∈ H. For this reason, normal subgroups are also sometimes called invariant or self-conjugate in
G.

This then gives various equivalent conditions for a subgroup to be normal:

• For all g ∈ G, the left and right cosets gN and Ng are equal;

• The set of left and right cosets of N in G are equal;

• N is a union of conjugacy classes of G;

• The image of conjugation of N by any element of G is a subset of N ;

• The image of conjugation of N by any element of G is equal to N .

(Some of these will be proved later.)

Theorem 2.3. Every subgroup of an abelian group is normal.

Proof. Let H be a subgroup of an abelian group G, and let g ∈ G. Let x ∈ gHg−1 so x = ghg−1 for
some h ∈ H. Then,

x = ghg−1

= hgg−1

= h

∈ H

so H is invariant under conjugation by any g and is hence normal. ■

2.1 Direct Products
Let G and H be groups. The direct product (group) G ×H of G and H is the group on the Cartesian
product of G and H,

{(g,h) : g ∈ G,h ∈ H}

of ordered pairs of elements from G and H, under the operations of G and H applied componentwise.
That is, we define the group operation ⋆ on G×H to be,

(g1,h1) ⋆ (g2,h2) = (g1 ∗ g2,h1 · h2)

where ∗ is the group operation on G, and · is the group operation on H. The identity element idG×H is
then given by (idG , idH), and the inverse of (g,h) is (g−1,h−1).

Theorem 2.4. Any group of order 4 is isomorphic to either C4 or C2 × C2.

Theorem 2.5. Any group of order 6 is isomorphic to either C6 or D3.

The quaternion group Q8 is a non-abelian group of order 8, isomorphic to the set of quaternion units
(and their inverses) under quaternion multiplication. That is, the set {1,i,j,k, − 1, − i, − j, − k} where
i2 = j2 = k2 = ijk = −1.

Theorem 2.6. Any group of order 8 is isomorphic to either C8 or C4 × C2, C2 × C2 × C2, D4, or Q8.
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3 Quotient Groups

A quotient group or factor group is a group obtained by identifying similar elements of a larger group
together using an equivalence relation that preserves some of the group structure, with the rest of the
structure being “factored” out. For instance, the group of integers under addition modulo n, (Z/nZ,+)
or equivalently, (Z,+n), can be obtained from the group of integers under addition, (Z,+), by identifying
elements that differ by a multiple of n, and defining a group structure that operates on congruence classes
rather than individual elements.

Subgroups and quotient groups are dual notions, the two being the primary ways of constructing smaller
groups from a larger one. Any normal subgroup has a corresponding quotient group, formed by elim-
inating the distinction between elements of the subgroups. For any congruence relation on a group G,
the equivalence classes of the identity element is always a normal subgroup, N , of the original group,
while the other classes are precisely the cosets of that normal subgroup, and the corresponding quotient
group is G/N .

The reason why G/N is called a “quotient” group comes from an analogy with division of integers.
When dividing 12 by 3, we obtain the answer 4 because we can split a collection of 12 objects into 3
subcollections each containing 4 objects. Quotient groups follow a similar idea, but when “dividing”
groups, we end up with another group as the answer rather than a number, because groups have more
structure than arbitrary collections of objects.

Lemma 3.1. Let N be normal in G, and let g,h ∈ G. Then, the product of any element in the coset gN
with any element in the coset hN is an element in the coset (gh)N .

Proof. Let gn1 ∈ gN and hn2 ∈ hN . Then, by normality of N , gN = Ng, so n1h ∈ Nh is equal to some
element hn ∈ hN , and hence (gn1)(hn2) = g(n1h)n2 = g(hn)n2 = (gh)(nn2) ∈ (gh)N . ■

If A and B are subsets of a group G, we define their (internal) product AB to be the set {ab : a ∈ A,b ∈
B}.

Lemma 3.2. If N is normal in G and gN and hN are cosets of N in G, then (gN)(hN) = (gh)N .

Proof. By the previous lemma, (gN)(hN) ⊆ (gh)N . Then, let n ∈ N , so (gh)n = (g idG)(hn) ∈
(gN)(hN) and (gh)N ⊆ (gN)(hN). ■

Theorem 3.3. Let N be normal in G. Then, the set G/N of left cosets gN of N in G forms a group
under internal multiplication called the quotient group of G by N .

Proof. By the previous lemma, (gN)(hN) = (gh)N , giving closure, and associativity is inherited from
associativity in G. Then, (1N)(gN) = (1g)N = gN = (g1)N = (gN)(1N) for all g ∈ G, so 1N is the
identity element, and (g−1N)(gN) = (g−1g)N = 1N , so (g−1)N is the inverse element of gN . ■

Note that if G is finite, then |G/N | = [G : N ] = |G|/|N |.

Lemma 3.4. If H ≤ G, then the inclusion map ϕ : H ↪→ G defined by h 7→ h for all h ∈ H is a
homomorphism. If H = G, then it is furthermore an (identity) isomorphism.

3.1 Kernels and Images
Let ϕ : G→ H be a group homomorphism. Then, the kernel ker(ϕ) of ϕ is the set of elements mapped
to idH . That is,

ker(ϕ) = {g ∈ G : ϕ(g) = idH}

The image im(ϕ) of ϕ is just its image as a function.
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Theorem (Trivial Kernel (Groups)). Let ϕ : G→ H be a group homomorphism. Then, ϕ is injective if
and only if ker(ϕ) = {idG}.

Proof. Since idG ∈ ker(ϕ), ϕ(idG) = idH . If ϕ is injective, then ker(ϕ) = {idG}. Conversely, suppose
ker(ϕ) = {idG}. Let g1,ginG such that ϕ(g1) = ϕ(g2). Then,

idH = ϕ(g1)
−1ϕ(g1)

= ϕ(g1)
−1ϕ(g2)

= ϕ(g−1
1 g2)

so g−1
1 g2 ∈ ker(ϕ), and hence g−1

1 g2 = idG and g1 = g2, so ϕ is injective. ■

Theorem 3.5. Let ϕ : G→ H be a group homomorphism. Then, ker(ϕ) is a normal subgroup of G.

Theorem 3.6. Let N ◁ G be a normal subgroup. Then the map π : G → G/N defined by g 7→ gN is a
surjective homomorphism with kernel ker(π) = N .

Proof. For any a,b ∈ G, π(ab) = (ab)N = (aN)(bN) = π(a)π(b), so π is a homomorphism. Then, for
any gN ∈ G/N , gN = π(g), so π is surjective. Now, suppose π(g) = idG/N . Then,

π(g) = idG/N

gN = idGN

Since gN = idGN , idG−1g = g ∈ N , so ker(π) = N . ■

This homomorphism is called the quotient map, or natural or canonical homomorphism from G to G/N .

Theorem 3.7. Let ϕ : G → H be a group homomorphism. Then, im(ϕ) is a (not necessarily normal)
subgroup of H.

Proof. Let h1,h2 ∈ im(ϕ), so there exist g1,g2 ∈ G such that ϕ(g1) = h1 and ϕ(g2) = h2. Then,

h1h
−1
2 = ϕ(g1)ϕ(g2)

−1 = ϕ(g1g2) ∈ im(ϕ)

so im(ϕ) is a subgroup by the one-step test. ■

3.2 The Isomorphism Theorems
Theorem (First Isomorphism Theorem). Let ϕ : G→ H be a homomorphism with kernel ker(ϕ) = K.
Then G/K ∼= im(ϕ), and more precisely, there is a homomorphism ϕ̄ : G/K → im(ϕ) defined by
ϕ̄(gK) = ϕ(g) for all g ∈ G.

Proof. Clearly, im(ϕ̄) = im(ϕ), so ϕ̄ is surjective. Now, suppose gK = hK, so gh−1 ∈ K. Let k = gh−1,
so g = kh. Then, because k ∈ K = ker(ϕ), ϕ(g) = ϕ(k)ϕ(h) = ϕ(h), so ϕ̄ is a well-defined map.

Let aK,bK ∈ G/K. Then,

ϕ̄
(
(aK)(bK)

)
= ϕ̄

(
(ab)K

)
= ϕ(ab)

= ϕ(a)ϕ(b)

= ϕ̄(aK)ϕ̄(bK)

so ϕ̄ is a homomorphism.
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Finally, suppose gK ∈ ker(ϕ̄), so,

ϕ̄(gK) = idH

ϕ(g) = idH

so g ∈ ker(ϕ) = K ■

We restate the theorem with a commutative diagram.

Theorem (First Isomorphism Theorem). Let ϕ : G → H be a homomorphism with kernel ker(ϕ) = K
and let π : G → G/K be the quotient map. Then, there is an isomorphism ϕ̄ : G/K → im(ϕ) such that
the following diagram commutes:

G G/ ker(ϕ)

im(ϕ)

ϕ
ϕ̄

π

Proof. Suppose aK = bK. Then, ϕ(aK) = ϕ(a)ϕ(K) = ϕ(a), and similarly for bK, so a = b. The
universal property of quotients then yields the unique well-defined map ϕ̄ : G/K → im(ϕ) such that
the diagram above commutes, and since ϕ and π are surjective, ϕ̄ = ϕ ◦ π is also surjective. Now,
suppose π(g) ∈ ker(ϕ̄). Then, from commutativity, idK = ϕ̄(π(g)) = ϕ(g), so g ∈ ker(ϕ), and hence
ker(ϕ̄) = {ker(ϕ)}, so ϕ̄ is injective. ■

The next two isomorphism theorems are less important, and are used mainly in more advanced group
theory.

Theorem (Second Isomorphism Theorem). Let G be a group, H ≤ G be a subgroup, and K ◁ G be a
normal subgroup. Then,

(i) HK = KH is a subgroup of G;

(ii) H ∩K is a normal subgroup of H;

(iii) H/(H ∩K) ∼= HK/K.

Theorem (Third Isomorphism Theorem). Let G be a group and let K ⊆ H ⊆ G. Suppose K and H
are both normal in G. Then,

(i) K is normal in H;

(ii) H/K is a normal subgroup of G/K;

(iii) (G/K)/(H/K) ∼= G/H.

4 Group Actions

Many groups we have used so far arise naturally from sets of functions from some set to itself. For
instance, Sym(X) is the set of permutations on a set X; GLn(R) is the set of endofunctions on Rn; and
Dn is the set of isometries on the set of vertices of a regular n-gon. Informally, we’d might say that Sym
“acts on” the set X, GLn(R) “acts on” Rn; and Dn “acts on” the vertices of a regular n-gon. We can
formalise this notion with group actions.

Let G be a group, and X a set. A (left) action of G on X is a map · : G×X → X satisfying,

(A1) idG · x = x for all x ∈ X;
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(A2) (gh) · x = g · (h · x) for all g,h ∈ G and x ∈ X.

Right group actions are defined similarly as maps X × G → X satisfying analogous properties, but we
will only consider left actions here.

Example.

• Sym(X) (and any subgroups, such as Alt(X)) acts on X by the map ρ · x = ρ(x).

• GLn(R) (and any subgroups, such as SLn(R)) acts on Rn by the matrix multiplication A ·v = Av.

In these examples, every element of the group induces a permutation on X, which is an element of
Sym(X). In fact, this is always the case:

Theorem 4.1. Let · be an action of a group G on a set X. For g ∈ G, define the map ϕ(g) : X → X by
ϕ(g)(x) = g · x. Then, ϕ(g) ∈ Sym(X), and furthermore, ϕ : G→ Sym(X) is a group homomorphism.

This suggests an alternative characterisation of group actions as a homomorphism from a group to the
symmetric group on some target set.

The kernel of an action · of G on X is defined to be the kernel K = ker(ϕ) of the homomorphism
ϕ : G→ Sym(X) as defined in the above theorem. That is,

K = {g ∈ G : g · x = x for all x ∈ X}

If K = {idG}, we say that the action · is faithful.

Let (G, ∗ ) be a group. Then, taking X to be the set G underlying the group, the left regular action of
G on itself is the faithful action defined by g · x = g ∗ x.

For a faithful action with kernel K, G ∼= G/K, as the quotient is trivial. Then, the first isomorphism
theorem gives G/K ∼= imϕ ≤ Sym(X), so G ≤ Sym(X).

Theorem (Cayley). Every group is isomorphic to a subgroup of a symmetric group. Specifically, for
each g ∈ G, the left-multiplication map ℓg : G → G defined by x 7→ gx is a permutation on G, and the
map G → Sym(G) defined by g 7→ ℓg is an injective homomorphism, thus embedding G into a subgroup
of Sym(G).

4.1 Orbits and Stabilisers
Let · be an action of G on X. Define the relation ∼ on x,y ∈ X by x ∼ y if and only if there exists a
g ∈ G such that y = g · x. Then, ∼ is an equivalence relation, and the equivalence classes are called the
orbits of G on X. In particular, the orbits of a specific element x ∈ X, denoted by G · x or OrbG(x) is,

OrbG(x) = {y ∈ X : (∃g ∈ G : g · x = y)}
= {g · x : g ∈ G}

An action of G on X is transitive if there is only a single orbit. Equivalently, an action is transitive if
for every x,y ∈ X, there exists g ∈ G such that y = g · x.

Given g ∈ G and x ∈ X such that g ·x = x, we say that x is a fixed point of g, or that g fixes x. For each
x ∈ X, the stabiliser (subgroup) of G with respect to x, denoted Gx or StabG(x), is the set of elements
in G that fix x. That is,

StabG(x) = {g ∈ G : g · x = x}

This is a subgroup of G, but not necessarily a normal one.

Theorem 4.2. Let G act on X and let x ∈ X. Then,
⋂

x∈X StabG(x) is the kernel of the action of G
on X.
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Proof. For any g ∈ G, g ∈
⋂

x∈X StabG(x) if and only if g · x = x for all x ∈ X, which is the definition
of being in the kernel. ■

Theorem (Orbit-Stabiliser). Let a finite group G act on X, and let x ∈ X. Then,

|G| = |OrbG(x)| × | StabG(x)|

Proof. Let y ∈ OrbG(x), so there exists g ∈ G such that y = g · x, and let H = StabG(x). Now, suppose
an element g′ ∈ G satisfies y = g′ · x. Then,

g′ · x = y

g′ · x = g · x
g−1g′ · x = x

so g−1g′ fixes x, giving g−1g′ ∈ StabG(x) = H. Then, g′ ∈ gH, so the elements satisfying g′ · x = y
are exactly the elements of the coset gH, and as cosets of a set are equal in size, we have |gH| = |H| =
|StabG(x)|. It follows that for each y ∈ OrbG(x), there are exactly |StabG(x)| elements g′ of G such
that g′ · x = y, so the total number of such y must be |G|/|StabG(x)|. ■

4.2 Conjugation
Recall that the (left) regular action of a group (G, ∗ ) is the action of the group on itself under the group
operation, so g · x = g ∗ x. Another important action of G on itself is the conjugation action defined by,

g · x = gxg−1

for g,x ∈ G. The orbits of this action are called the conjugacy classes of G, and elements in the same
conjugacy class are said to be conjugate in G. We write ClG(x) for the orbit of x, or equivalently, the
conjugacy class containing x. That is,

ClG(x) = {gxg−1 : g ∈ G}

The stabiliser for this action with respect to x is the set of elements g ∈ G such that g · x = x, so,

g · x = x

gxg−1 = x

gx = xg

so the stabiliser is exactly the set of elements that commute with x. This subgroup is called the centraliser
of x in G, and is denoted CG(x). That is,

CG(x) = {g ∈ G : gx = xg}

Applying the orbit-stabiliser theorem then yields,

Theorem 4.3. Let G be a finite group and let x ∈ G. Then,

|G| = |ClG(x)| × |CG(x)|

The kernel K of this action then consists of the elements that fix, and hence commute with, all elements
g ∈ G. This is called the centre of G, and is denoted Z(G). So,

Z(G) = {f ∈ G : fg = gf for all g ∈ G}

Note that g ∈ Z(g) if and only if ClG(g) = {g}.
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Example. For any abelian group G,

• Z(G) = G;

• CG(g) = G;

• ClG(g) = {g}.

for all g ∈ G.

Example. The symmetric group S3 has three conjugacy classes that partition its six permutations of
three objects:

• Identity (abc 7→ abc);

• Transposing two elements (abc 7→ acb,abc 7→ bac,abc 7→ cba);

• Cyclic permutations of three elements (abc 7→ cab, abc 7→ cab).

These three classes also correspond to the three ways of transforming a equilateral triangle: identity,
reflections and rotations, respectively.

4.3 Conjugacy Classes in Symmetric Groups
Consider two permutations f,g ∈ Sym(X). Suppose one of the cycles in g is (x1,x2, . . . ,xr), so g(x1) = x2,
g(x2) = x3, etc. Then, fg(x1) = f(x2), so fgf−1

(
f(x1)

)
= fg(x1) = f(x2), and more generally,

fgf−1
(
f(xi)

)
= f(xi+1) for i taken modulo r. So, fgf−1 has a cycle (f(x1),f(x2), . . . ,f(xr)). This

applies to any cycle in g, so we obtain:

Theorem 4.4. Given a permutation g as a product of cycles, the conjugate fgf−1 of g by f is the
permutation given by the same product of cycles with each x ∈ X replaced with f(x).

Example. Let X = {1,2,3,4,5,6,7}, g = (1,5)(2,4,7,6), and f = (1,3,5,7,2,4,6). Then,

fgf−1 =
(
f(1),f(5)

)(
f(2),f(4),f(7),f(6)

)
= (3,7)(4,6,2,1)

A permutation has cycle type 2r23r34r4 . . . nrn . . . if it has exactly ri cycles of length i, for i ≥ 2.

Example. The permutation (1,2,3)(4,5)(6,7)(8,9,10)(11,12,13,14),(15,16) has cycle type 233241 because
it has 3 cycles of length 2, 2 cycles of length 3, and 1 cycle of length 4.

Theorem 4.5. Two permutations in Sym(X) are conjugate in Sym(X) if and only if they have the same
cycle type.

4.4 Conjugacy Classes in Alternating Groups
Recall that the alternating group An is the subgroup of Sn that consists of even permutations. The odd
and even permutations partition Sn, so the index of An in Sn is 2, so An is normal in Sn.

Theorem 4.6. Let g ∈ An. Then, either,

ClAn
(g) = ClSn

(g)

or

|ClAn
(g)| = 1

2
|ClSn

(g)|

hold.

Algebra II | 17



MA249 4.5 Simple Groups

4.5 Simple Groups
Recall that a non-trivial group G is simple if the only subgroups normal in G are G itself, and the trivial
group {idG}.

Theorem 4.7. Cyclic groups of prime order are simple.

Proof. By Lagrange’s theorem, the only possible order of their subgroups are 1 and p. Normality follows
from cyclic groups being abelian. ■

In fact, these are the only abelian simple groups possible:

Theorem 4.8. A simple abelian group is cyclic with prime order.

Proof. Let G be simple and abelian, and let g ∈ G \ {idG}. If |g| is infinite, then the subgroup generated
by g2 is non-trivial, as it contains g2 ̸= idG; and proper, as it does not contain g; so G is not simple. If
|g| is finite but composite, so |g| = ab, then the subgroup generated by ga is similarly non-trivial and
proper, so G is not simple. It follows that |g| is finite and prime, and furthermore, we have ⟨g⟩ = G, or
else ⟨g⟩ would be a non-trivial proper subgroup. ■

There are also finite non-abelian groups that are simple. General simple groups have been classified
into three main infinite families (with cyclic groups of prime order forming one of the families), and 26
separate groups that do not fit into any of the families, called the sporadic groups.

One of the other infinite families of simple groups consists of the alternating groups An for n ≥ 5.

Lemma 4.9. A subgroup H of a group G is normal in G if and only if H consists of a union of conjugacy
classes of G.

Proof. Recall that H is normal in G if and only if it is invariant under conjugation . That is, ghg−1 ∈ H
for all g ∈ G, h ∈ H. But this is just the statement that H is normal in G if and only if ClG(h) ⊆ H for
all h. ■

4.6 Sylow’s Theorems
One corollary of Lagrange’s theorem is that the order of any subgroup H of a finite group G always
divides the order of G. One obvious converse question to ask is if a group G has subgroups of all orders
that divide |G|. This is true for some groups, like finite cyclic grops. However, it is not true in general:

Theorem 4.10. A4 has no subgroup of order 6.

Proof. Suppose A4 has a subgroup H of order 6. Groups of order 6 must be cyclic or dihedral, and A4

has no elements of order 6, so H ∼= S3, so H must have 3 elements of order 3. Specifically, H must
contain the identity element and 3 pairs of transpositions. But then these elements form a subgroup of
A4, so H contains a subgroup of order 4, contradicting Lagrange’s theorem. ■

Let G be a finite group of order pnm, where n is the largest power of the prime p that divides |G|, so m
is not divisible by p. A subgroup of G of order pn is a Sylow p-subgroup of G.

Theorem (Sylow’s Theorems). Let G be a finite group, p a prime, and |G| = pnm, where p ∤ m. Then,

(i) G has a Sylow p-subgroup, and any subgroup of G of order pa for 1 ≤ a ≤ n is contained in a Sylow
p-subgroup of G.

(ii) Any two Sylow p-subgroups of G are conjugate in G. That is, if H and K are Sylow p-subgroups
of G, then there exists an element g ∈ G such that gHg−1 = K.

(iii) The number r of Sylow p-subgroups of G satisfies r ≡ 1 (mod p) and r|m.
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Let G be a group of order pnm with n ≥ 1 and p ∤ m. We define Sylp(G) to be the set of Sylow
p-subgroups of G,

Sylp(G) = {H ≤ G : |H| = pn}

and by Sylow’s first theorem, this set is always non-empty. It turns out that this set is closed under
conjugation:

Lemma 4.11. If P ∈ Sylp(G) and g ∈ G, then gPg−1 ∈ Sylp(G).

Now, consider the map · : G × Sylp(G) → Sylp(G) defined by g · H = gHg−1 for H ∈ Sylp(G). The
above lemma verifies the correctness of the codomain, but this map can furthermore be shown to be a
group action of G on Sylp(G). Now, OrbG(P ) = {gPg−1 : g ∈ G}, and by Sylow’s second theorem, this
action is transitive, so,

OrbG(P ) = Sylp(G)

Then, by the orbit-stabiliser theorem and Lagrange’s theorem, we have,

Lemma 4.12. |Sylp(G)| divides |G|/|P |.

Theorem 4.13. If there is only one Sylow p-subgroup of G, then it is normal in G.

4.7 Sylow’s Theorem and Simple Groups
Theorem 4.14. There are no simple groups of order 2 552.

Proof. Let G be a group of order 2 552 = 8 · 11 · 29.

Take p = 11, so |G| = 11 · (8 · 29) = 111 · 232. The number of Sylow 11-subgroups, r, must divide 232
and satisfy r ≡ 1 (mod 11). r = 1 clearly satisfies the requirements. For other values of r, consider the
factorisation 232 = 23 · 29. The factors of 232 are then, 1, 2, 4, 8, 29 ≡ 7, 58 ≡ 3, and 116 ≡ 6, and
232 ≡ 1, so r = 232 is the only other solution.

Now, if G has more than 1 Sylow 11-subgroup, then it must have 232 Sylow 11-subgroups. As 11 is
prime, these subgroups must be cyclic, so every non-identity element generates the group. It follows
that these subgroups intersect only at the identity element, so each subgroup contributes 10 elements of
order 11, so there must be 232 · 10 = 2 320 elements of order 11 in G.

Now, take p = 29, so |G| = 29 · (8 · 11) = 291 · 88. By identical arguments as before, the number of Sylow
29-subgroups must be 1 or 88, and again, as 29 is prime, each subgroup must be cyclic, so if there is
more than 1 Sylow 29-subgroup, then there are 88 · 28 = 2 464 elements of order 28.

Now, by Sylow’s first theorem, there exist Sylow 29 and 11-subgroups. If there are more than one of
each, then we have 2 320 and 2 464 elements of order 11 and 29, respectively. But these values sum to
more than 2 552 = |G|, so we cannot simultaneously have more than 1 Sylow 29 and 11-subgroups. But
then, any lone Sylow p-subgroup is normal, so G is not simple. ■

5 Rings

A ring is a triple, (R,+ , · ), where R is a set and + and · are binary operations R×R→ R such that,

(R0) R is closed under ×;

(R1) R is an abelian group under +;

(R2) · is associative on R;

(R3) · left and right distributes over +;
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(R4) R contains an identity under ×.

or in more detail,

(R0) ∀a,b ∈ R, a · b ∈ R (closure of · );

(R1) (R,+) is an abelian group (additive group);

(R2) ∀a,b,c ∈ R, a · (b · c) = (a · b) · c (associativity of · );

(R2) ∀a,b,c ∈ R, (a+ b) · c = a · c+ b · c and a · (b+ c) = a · b+ a · c (left and right distributivity);

(R3) ∃1R ∈ R such that ∀a ∈ R, a · 1R = 1R · a = a (existence of multiplicative identity).

We call the operation denoted by + addition, and the operation denoted by × multiplication or product,
regardless of what the operations actually are. We also call the additive identity 0R the ring zero, as it
is also the zero element for the multiplication operation.

Triples satisfying only axioms R0 to R3 are sometimes called rngs (as in, rings without identity), and
in contrast, rings with identity are called unital rings to distinguish them from rngs. Whenever “ring” is
used without qualification, we will assume that it is a unital ring.

(R,+ ,×) is furthermore a commutative ring if it satisfies

(R5) × is commutative on R.

Note that the “commutative” part of the name “commutative ring” refers to commutativity of multipli-
cation, as commutativity of addition is required in all rings regardless. However, rings notably do not
require multiplicative inverses.

Example.

• The set {0} under the trivial operations 0 + 0 = 0 and 0 · 0 = 0 forms the zero or trivial ring.

• Z, Q, R, and C are commutative rings under their usual addition and multiplication operations.

• Z/nZ or Zn is a commutative ring under addition and multiplication modulo n for all naturals
n ∈ N.

• If R is a ring, the set R[x] of polynomials in indeterminate x and coefficients in R is another ring
under the usual addition and multiplication of polynomials.

• If R is a ring, then the set Mn×n(R) of n × n matrices with entries in R is another ring. Matrix
rings are generally non-commutative, and in fact, are commutative if and only if R is the trivial
ring, or R is commutative and n = 1.

Let (R,+ , · ) be a ring, and let S be a subset of R. Furthermore, suppose that (S,+ , · ) is also a ring.
(S,+ , · ) is then a subring of (R,+ , · ).

To show that S is a subring of R, it suffices to show that S contains the identity of + and · , is closed
under + and · , and that every element has an inverse in S under +. More symbolically, if R is a ring,
then S ⊆ R is a subring if and only if,

• 0R ∈ S (additive identity);

• 1R ∈ S (multiplicative identity);

• If a,b ∈ S then a+ b ∈ S (closure under +);

• If a,b ∈ S then a · b ∈ S (closure under ×);

• If a ∈ S then (−a) ∈ S (additive inverses).
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Associativity is inherited from the main ring, and you do not have to check for multiplicative inverses.

We can collapse some of these properties together:

Theorem (Subring Test). If (R,+ , · ) is a ring and S ⊆ R, then (S,+ , · ) is a subring of R if and only
if,

1. (S,+) is a subgroup of (R,+);

2. a,b ∈ S → ab ∈ S;

3. 1R ∈ S.

Proof. The reverse direction is trivial. Conversely, suppose the three conditions above hold for a subset
S ⊆ R. We verify the ring axioms:

(R0) Closure follows directly from condition 2.

(R1) (S,+) is an abelian group as it is a subgroup of an abelian group by condition 1.

(R2) Associativity is inherited from R as S ⊆ R.

(R3) Distributivity is inherited from R as S ⊆ R.

(R4) Multiplicative identity follows directly from condition 3.

■

Example.

• Z[i] = {a+ bi : a,b ∈ Z} is a subring of C called the ring of Gaussian integers.

• Z
[√

2
]
=

{
a+ b

√
2 : a,b ∈ Z

}
is a subring of R.

• The set, { a

2n
: a ∈ Z,n ∈ Z≥0

}
is a subring of Q called the ring of dyadic rationals.

These examples show that it can be easier to describe a ring by expressing it as a subring of a different
known ring, as we avoid having to define the multiplication and addition operations, and do not have to
verify associativity and distributivity.

Theorem 5.1. The intersection of subrings of a ring R is itself a subring of R.

5.1 Morphisms
A (ring) homomorphism between two rings (R,+ ,·) and (S,⊕ ,⊙) is a function ϕ : R→ S that preserves
the structure of R. That is,

• ϕ(a+ b) = ϕ(a)⊕ ϕ(b);

• ϕ(a · b) = ϕ(a)⊙ ϕ(b);

• ϕ(1R) = 1S .

Additive inverses and the additive identity are also part of the preserved structure, but they are not
explicitly specified as they follow from these three conditions.

If the inverse of a ring homomorphism is a homomorphism, or equivalently, if the homomorphism is a
bijection, then it is called a (ring) isomorphism. If an isomorphism exists between R and S, we say that
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R and S are isomorphic (rings), and we write R ∼= S to denote this relation. Again, isomorphism is an
equivalence relation.

Like with groups, an injective ring homomorphism is also called a monomorphism, and a surjective
homomorphism is called an epimorphism.

Example.

• For each n ∈ N, the map x 7→ x (mod n) is a ring homomorphism Z→ Zn.

• The map z 7→ z is a ring isomorphism C→ C.

• If R is any ring and S is a subring of R, then for each element α ∈ R, the map ϕα : S[x] → R
defined by f 7→ f(α) is a ring homomorphism known as the evaluation map (at α).

• If ϕ : R → S is a ring homomorphism, then there is an induced homomorphism ψ : R[x] → S[x],
defined by,

•

ψ(anx
n + . . .+ a1x+ a0) = ϕ(an)x

n + · · ·+ ϕ(an)x+ ϕ(a0)

Let ϕ : R → S be a ring homomorphism. Then, the kernel ker(ϕ) of ϕ is its kernel when treated as
a group homomorphism between the additive groups of R and S. That is, the set of elements that are
mapped to the additive identity:

ker(ϕ) = {r ∈ R : ϕ(r) = 0S}

The image im(ϕ) of ϕ is just its image as a function.

We have similar results for ring homomorphisms as we had for group homomorphisms:

Theorem (Trivial Kernel (Rings)). Let ϕ : R→ S be a ring homomorphism. Then, ϕ is injective if and
only if ker(ϕ) = {0r}.

Proof. See § 3.1. ■

Theorem 5.2. Let ϕ : R→ S be a ring homomorphism. Then, im(ϕ) is a subring of S.

Proof. Follows from the subring test. ■

Note that the kernel of a ring homomorphism is not necessarily a subring of the target ring. For example,
the kernel of the homomorphism ϕ : Z→ Zn is the set nZ, which does not contain 1 for all n ≥ 2.

Let R and S be rings. The direct product (ring) R× S of R and S is the ring on the Cartesian product
of R and S,

{(r,s) : r ∈ R,s ∈ S}

of ordered pairs of elements from R and S, under the two operations of R and S both applied compo-
nentwise. That is,

(r1,s1) + (r2,s2) = (r1 + r2,s1 + s2)

(r1,s1) · (r2,s2) = (r1 · r2,s1 · s2)

where + and · on the left are the ring operations on R× S, and the two + and · operations on the right
are the appropriate ring operations on R and S. The multiplicative identity element 1R×S is then given
by (1R,1S); the additive identity 0R×S by (1R,1S); and the additive inverse of (r,s) by (−r,− s).
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Notice that R and S are not generally isomorphic to subrings of R×S in general, even under the obvious
projection mapping. For instance, R can be thought of as the elements of R× S of the form (r,0S), and
these elements do indeed define a ring isomorphic to R, but its multiplicative identity element is (1R,0S),
which is not the identity of R× S, so this ring is not a subring of R× S.

Theorem (Chinese Remainder Theorem). Zn × Zm
∼= Znm if and only if n and m are coprime.

By induction, we can extend this result to,

Corollary 5.2.1. If n = pa1
1 · p

a2
2 · · · p

ak

k is a factorisation of n into k distinct primes, then,

Zn
∼= Zp

a1
1
× Zp

a2
2
× · · · × Zp

ak
k

Theorem 5.3. Let R be a ring and a,b ∈ R. Then,

(i) a · 0 = 0 · a = 0;

(ii) a · (−1) = (−1) · a = −a.

Proof. For (i),

a · 0 = a · (0 + 0)

= a · 0 + a · 0

so a · 0 = 0 by the cancellative property in the group (R,+), and similarly, 0 · a = 0.

For (ii),

(−1) · a+ 1 · a = (−1 + 1) · a
= 0 · a
= 0

so (−1) · a = −a by uniqueness of inverses in the group (R,+), and similarly, a · (−1) = −a. ■

Theorem (Uniqueness of Multiplicative Identity). The multiplicative identity of a ring is unique.

Proof. Suppose 1 and 1′ are multiplicative identities of R. Then, 1 = 1 · 1′ = 1′. ■

Theorem (Coinciding Identities). Let R be a ring, and suppose that the additive and multiplicative
identities coincide, so 0 = 1. Then, R is the trivial ring.

Proof. For all a ∈ R, a = a · 1 = a · 0 = 0. ■

If a ring is not the trivial ring, we also say that it is a non-zero ring.

6 Ideals

For an arbitrary ring, (R,+ , · ), let (R,+) be its additive group. A subset I ⊆ R is a left ideal in R if,

(I1) (I,+) is a subgroup of (R,+),

(I2) For every r ∈ R and every x ∈ I, r · x ∈ I,
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A right ideal is defined similarly, with r · x ∈ I being replaced with x · r ∈ I in the second requirement,
and a two-sided ideal, or just ideal, is a left ideal that is also a right ideal. If the ring is commutative,
then the definitions of left, right and two-sided ideals coincide.

So, an ideal is a subset of the ring that is a group under the ring addition restricted to the subset and
absorbs multiplication from one or both sides.

Theorem 6.1. An ideal I of a ring R contains 1R only when I = R.

Theorem 6.2. If ϕ : R→ S is a ring homomorphism, then ker(ϕ) is an ideal in R.

Proof. ker(ϕ) is an additive subgroup of R when ϕ is considered as a group homomorphism. Then, if
r ∈ ker(ϕ) and x ∈ R, then,

ϕ(x · r) = ϕ(x) · ϕ(r)
= ϕ(x) · 0S
= 0S

so x · r ∈ ker(ϕ). Similarly, r · x ∈ ker(ϕ), so ker(ϕ) absorbs multiplication as well, and is hence an ideal
in R. ■

When R is a commutative ring, the subset,

{ra : r ∈ R}

consisting of all multiples of a in R is an ideal of R. This ideal is called the principal ideal generated by
a, and is denoted (a), aR, or Ra.

For an arbitrary ring, the principal ideal (a) is equal to the set of finite sums,{
k∑

i=1

riasi : ri,si ∈ R

}

Theorem 6.3. If R is commutative, then (a) = R if and only if a is a unit of R.

6.1 Quotient Rings
Ideals are to rings what normal subgroups are to groups in that we can quotient a ring by an ideal to
generate another ring, just like how groups can be factored through by a normal subgroup.

Since an ideal I of a ring R is a subgroup of (R,+), we can consider its cosets I + a for a ∈ R. We
already know that these form a quotient group under the addition operation defined by,

(I + a1) + (I + a2) = I + (a1 + a2)

But to define a ring structure, we also require a multiplication operation.

Theorem (Quotient Ring). Let I be an ideal of R. Then, the set R/I of cosets I + a of I in R forms
a ring under the addition operation in the quotient group, and the multiplication,

(I + a) · (I + b) = I + (a · b)

Example. The quotient ring Z/(n) = Z/nZ is isomorphic to the ring Zn of residues modulo n, with the
isomorphism Zn → Z/nZ given by x 7→ x+ nZ.

Theorem 6.4. Let I be an ideal of a ring R. Then, the map π : R→ R/I defined by π(a) = I + a is a
surjective ring homomorphism with kernel I called the quotient map.
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Theorem (First Isomorphism Theorem). Let ϕ : R → S be a homomorphism with kernel ker(ϕ) = I.
Then R/I ∼= im(ϕ), and more precisely, there is a homomorphism ϕ̄ : R/I → im(ϕ) defined by ϕ̄(I+a) =
ϕ(a) for all a ∈ R.

6.2 Integral Domains
Let R be a ring, and let a,b ∈ R. If a and b are both non-zero and satisfy ab = 0, then a and b are called
(left and right, respectively) zero divisors.

A ring R is an (integral) domain if,

(i) R is commutative;

(ii) R is not the trivial ring;

(iii) R has no zero divisors; that is, if a,b ∈ R, then a · b = 0→ (a = 0 ∨ b = 0).

That is, an integral domain is a non-zero commutative ring in which the product of any two non-zero
elements is non-zero.

Example.

• The rings Z, Q, R, and C are integral domains.

• Subrings of integral domains are also integral domains, so Z[i] and Z
[√

2
]

are also integral domains.

Again, it can be easier to describe integral domains as subrings of other known integral domains.

Theorem 6.5. Zn is an integral domain if and only if n is prime.

Proof. If n = 1, then Zn
∼= {0}. If n = ab is composite, then ab = 0 with a,b ̸= 0 in Zn. If n is prime

and a,b ∈ Zn, then a and b are coprime to n, and hence ab is coprime to n by multiplicativity of gcd, so
n does not divide ab, and ab ̸= 0 in Zn. ■

6.3 Units
An element, a, of a ring R is a unit if it has a two-sided inverse under multiplication. That is, there
exists some b ∈ R such that a · b = b · a = 1.

Note that in any non-trivial ring, the additive identity 0R is not a unit.

The unit group of R is the group formed by the set {a ∈ R : a is a unit in R} under the ring multiplication
operation, denoted R∗.

Example. In Q, R and C, every non-zero element, k, has a multiplicative inverse, 1
k ∈ Q,R,C, so the

units are the non-zero elements. Q∗, R∗ and C∗ are therefore Q \ {0}, R \ {0} and C \ {0}, respectively.

However, in Z, 1
k is an integer only for k = ±1, so the units in Z are ±1. Z∗ is therefore {−1,1}.

In Zn, an element a ∈ Zn is a unit in Z/nZ if and only if a and n are coprime (by the Euclidean algorithm
and Bézout’s identity), so Z∗

n = {a : gcd(a,n) = 1}.

A non-trivial ring R is called a division ring if R \{0R} is a group under multiplication. That is, if every
non-zero element is a unit, or, if R \ {0R} = R∗.

A field is a commutative division ring. So, in total, (F,+ ,×) is a field if,

• (F,+) is an abelian group with additive identity 0F ;

• (F \ {0F },×) is an abelian group with multiplicative identity 1F ;

• 0F ̸= 1F (the non-degeneracy condition);
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• multiplication distributes over addition.

Example.

• Q, R, and C are fields.

• For any prime p, Z/pZ is a finite or Galois field, sometimes denoted Fp.

Theorem 6.6. Every field is an integral domain.

Proof. Let F be a field. Suppose there exist x,y ∈ F \ {0} such that xy = 0. As F is a field, x ̸= 0 has
a multiplicative inverse x−1, so,

xy = 0

x−1xy = 0

y = 0

contradicting the definition of y. ■

Lemma (Cancellative Properties in Domains). Let R be an integral domain, and let x,y,c ∈ R. If,

• c ̸= 0;

• cx = cy or xc = yc,

then x = y.

Proof.

cx = cy

cx− cy = 0

c(x− y) = 0

Since R is a domain, and k ̸= 0, we must have x− y = 0, so x = y. The proof for xc = yc is similar. ■

Theorem 6.7. Every finite integral domain is a field.

Proof. Let R = {0R = r0,r1,r2, . . . ,rn} be a finite domain. By the previous lemma, for a fixed i > 0, the
n products rirj for 1 ≤ j ≤ n are distinct and non-zero, and since there are only n possible values, they
all occur exactly once. In particular, this means that rirj = 1R for some j, so R is a field. ■

Let R be a ring. If there exists a positive integer n such that nx = 0 for all x ∈ R, then, then we call
the minimal such positive integer the characteristic of R. If no such positive integer exists, then the
characteristic is 0.

Example.

• Q and Z have characteristic 0.

• Zn has characteristic n.

• The polynomial ring R[x] has the same characteristic as R.
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7 Polynomial Rings

Let R[x] be a polynomial ring over a ring R. If an element f ∈ R[x] has the form,

f = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

with an ̸= 0, then we define the degree deg(f) of f to be n, and an is the leading coefficient of f . If
an = 1, then f is a monic polynomial.

Note that non-zero constant polynomials consisting of a single element of R have degree 0, and the degree
of the zero polynomial is undefined, although some texts take it to be −1 or −∞.

Theorem 7.1. If R is an integral domain, then so is R[x].

Theorem 7.2. If R is an integral domain, then the units of R and R[x] coincide.

Note that these properties can fail if R is not an integral domain. For example, Z4 is not a integral
domain as 2 · 2 = 4 ≡ 0 in Z4. Then, the polynomial f = 2x+ 1 ∈ Z4[x] gives f · f = 4x2 + 4x+ 1 ≡ 1,
so f is a unit in Z4[x] \ Z4.

We can also define polynomial rings in multiple variables. We write R[x1, . . . ,xn] for the ring of poly-
nomials in n independent commuting indeterminates x1, . . . ,xn with coefficients in R. A monomial in
this ring is an expression of the form xα1

1 xα2
2 · · ·xαn

n , where a1, . . . ,an are non-negative integers, and a
polynomial in this ring is a linear combination of these monomials with coefficients in R.

Note that we can also build up a polynomial ring in multiple variables as a chain of polynomial rings
in single variables. For instance, if S = R[x1], then R[x1,x2] = S[x2], and so on. By induction on the
previous 2 theorems, if R is an integral domain, then R[x1, . . . ,xn] is an integral domain and the units
of R and R[x1, . . . ,xn] coincide.

Lemma 7.3. R[x1, . . . ,xn] is commutative if and only if R is commutative.

7.1 Polynomial Division
Throughout this section, F will be a field.

Theorem (Polynomial Divison with Remainder). For any f,g ∈ F [x] with g non-zero, there exist
q,r ∈ F [x] such that f = qg + r, where either r = 0 or deg(r) < deg(g).

Theorem (Remainder Theorem). Let f = f(x) ∈ F [x]. Then, for a ∈ F , f(a) = 0 if and only if (x−a)
divides f .

Proof. By the previous proposition,

f(x) = g(x)(x− a) + r(x)

Since deg(x− a) = 1, r = 0 or deg(r) < 1, so r ∈ F is a constant polynomial. Then,

f(a) = g(a)(a− a) + r

= r

■

Corollary 7.3.1. If f ∈ F [x] is not the zero polynomial, then f(a) = 0 for at most deg(f) distinct
values of a ∈ F . That is, a polynomial of degree d has at most d roots.
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Proof. By induction on deg(f). If deg(f) = 0, then f is a constant non-zero function, so f(a) ̸= 0. If
otherwise deg(f) > 0 and f has no roots, we are done.

Now, suppose f(a) = 0 for some a ∈ F , so f = g(x− a) with with deg(g) = deg(f)− 1. If we then have
f(b) = 0, then either a = b, or g(b) = 0, in which case, there are at most deg(f)− 1 such values of b by
the inductive hypothesis. ■

Theorem 7.4. Let F be a field. Then, all finite subgroups of the unit group F ∗ are cyclic.

Corollary 7.4.1. If p is prime, then the set Zp \ {0} = {1,2, . . . ,p}, under multiplication modulo p, is
a cyclic group of order p− 1.

8 Principal Ideal Domains

The ring R will be an integral domain (and is hence commutative) for this section.

Recall that in a commutative ring, the principal ideals are those of the form (a) = aR for some fixed
a ∈ R.

A domain R is a principal ideal domain (PID) if every ideal of R is principal.

Theorem 8.1. For every field F , the polynomial ring F [x] is a principal ideal domain.

Various familiar properties of divisibility that hold in Z hold in more general PIDs. But first, we need
to extend the notion of divisibility to general integral domains.

Let x,y ∈ R. We say that x divides y if y = xr for some r ∈ R, and we write x|y to denote this relation.

Lemma 8.2. The following statements are equivalent in an integral domains R:

(i) x|y;

(ii) y ∈ (x);

(iii) (y) ⊆ (x).

Proof. (i)→ (ii): If x|y, then y = xr for some r ∈ R, so y ∈ (x) = {xt : t ∈ R}.

(ii)→ (iii): If y ∈ (x), then y = xr for some r ∈ R, so

(y) = {yt : t ∈ R}
= {(xr)t : t ∈ R}
= {x(rt) : t ∈ R}
⊆ {xk : k ∈ R}
= (x)

(iii)→ (i) y ∈ {yt : t ∈ R} ⊆ {xr : r ∈ R}, so y = xr for some r ∈ R and x|y. ■

Let x,y ∈ R. If both x|y and y|x, then x and y are associate in R, and we write x ∼ y.

Lemma 8.3. The following statements are equivalent in an integral domains R:

(i) x ∼ y;

(ii) (y) = (x);

(iii) There exists a unit q ∈ R such that x = qy.

Example.
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• In Z, the only units are ±1, so x ∼ y if and only if |x| = |y|.

• If F is a field, then the units in F [x] are the non-zero constants, so x ∼ y if and only if x = ay for
some a ∈ F \ {0}, so every polynomial is associate to a unique monic polynomial.

Let x,y ∈ R. A greatest common divisor gcd(x,y), also called a highest common factor, is an element
d ∈ R such that,

(i) d|x and d|y;

(ii) if k|x and k|y for some k ∈ R, then k|d.

so a greatest common divisor is a maximal element with respect to the partial ordering induced by
divisibility.

A least common multiple lcm(x,y) is an element m ∈ R such that,

(i) x|m and y|m;

(ii) if x|k and y|k for some k ∈ R, then m|k.

so a least common multiple is a minimal element, as above. Greatest common divisors and least common
multiples are dual notions. Note that gcd(0,x) = x and lcm(0,x) = 0 for any x ∈ R.

Note that a greatest common divisor is not unique. For example, in Z, 2 and −2 are both greatest
common divisors of 4 and 6. Any two greatest common divisors must divide each other, and are hence
associate. Similar statements hold for least common multiples. So, gcds and lcms and are unique up to
the associate relation.

Proving existence of gcds is more difficult. In arbitrary integral domains, they do not always exist, but
in PIDs, they do, and in fact, for the PID Z this is exactly the statement of Bézout’s identity.

Theorem 8.4. If R is a PID, then lcm(x,y) and gcd(x,y) exist for all x,y ∈ R. Furthermore, there exist
r,s ∈ R such that gcd(x,y) = rx+ sy.

8.1 Prime and Irreducible Elements
There are two different ways to characterise prime numbers, but these definitions lead to distinct notions
in arbitrary domains.

Let r ∈ R \ {0}. Then, r is irreducible if,

(i) r is not a unit;

(ii) if r = ab, then either a or b is a unit.

Let r ∈ R \ {0}. Then, r is prime if,

(i) r is not a unit;

(ii) if r|ab, then r|a or r|b.

Theorem 8.5. If R is a domain, then every prime is also irreducible.

In general, the converse does not hold in an arbitrary integral domain, but it does in a PID.

Theorem 8.6. If R is a PID, then every irreducible is also prime.

Together, these theorems show that prime and irreducible elements coincide in PIDs.

An integral domain R is a factorisation domain (FD) if each non-unit x ∈ R \ {0} admits a factorisation
x = r1 · r2 · · · rn, where the ri are irreducible.
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A factorisation domainR is furthermore a unique factorisation domain (UFD) if for any two factorisations∏n
i=1 ri =

∏m
i=1 si = x of a non-unit x ∈ R \ {0}, we have n = m, and there exists a permutation σ ∈ Sn

such that ri ∼ sσ(i) for all i.

Theorem 8.7. If R is a UFD, then every irreducible is also prime.

So, prime and irreducible elements also coincide in UFDs.

Lemma 8.8. A PID is a FD.

Theorem 8.9. If R is an FD in which all irreducibles are prime, then R is a UFD. In particular, every
PID is a UFD.

Theorem 8.10. Any finite collection of elements in a UFD has a gcd and an lcm.

9 Fields

An ideal I of a ring R is maximal if I ̸= R, but if J is any ideal of R such that I ⊆ J ⊆ R, then I = J ,
or J = R.

Theorem 9.1. An ideal I in a commutative ring R is maximal if and only if R/I is a field.

Theorem 9.2. For a ̸= 0, the principal ideal (a) in a PID R is maximal if and only if a is irreducible.

If F is a field, and f ∈ F [x] has degree deg(f) > 0, then the elements of the quotient ring F [x]/(f)
correspond to polynomials in F [x] with degree less than f , where multiplication is done modulo f .

When f is irreducible, the previous two theorems imply that F [x]/(f) is a field. The case F = Q is
particularly important as Q[x]/(f) is isomorphic to a subfield of C.

An element α ∈ C is algebraic over Q if it satisfies a polynomial f(α) = 0 for some f ∈ Q[x] with
deg(f) > 0. An element that is not algebraic is called transcendental.

Recall that for any α ∈ C, the evaluation map ϕα : Q[x]→ C, defined by f 7→ f(α), is a ring homomor-
phism. Here, there are two cases to consider; whether α is algebraic or not.

If α is transcendental, then there are no polynomials f ∈ Q[x] such that f(α) = 0, so ker(ϕα) contains
only the zero polynomial, and so, by the first isomorphism theorem, we have im(ϕα) ∼= Q[x]. If α is
algebraic, then there exists a non-zero polynomial f ∈ Q[x] such that f(α) = 0, so f ∈ ker(ϕα), and
since ker(ϕα) is an ideal of the PID F [x], ker(ϕα) must be a principal ideal, so there is some m ∈ F [x]
such that ker(ϕα) = (m).

This polynomial m is not necessarily unique, but any two distinct values must divide each other and
thus be associate in F [x]. By multiplying by constants, we can assume that m is monic, and this monic
polynomial is unique and is called the minimal polynomial of α over Q.

Theorem 9.3. If α is algebraic in C, then there is a unique non-zero irreducible monic polynomial
m ∈ Q[x] such that m(α) = 0.

By the first isomorphism theorem, we then have,

im(ϕα) ∼= Q[x]/(f)

and since f is irreducible, (f) is a maximal ideal, and hence Q[x]/(f) is a field, so im(ϕα) is a subfield
of C, denoted Q(α).

Fields of this type are called number fields.
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10 Polynomial Fields

A field F is algebraically closed if for every f(x) ∈ F [x] with degree deg(f) > 0, there exists a ∈ F such
that f(a) = 0.

Example.

• C is an algebraically closed field.

• The subfield A = {a ∈ C : ∃f ∈ Q[x],f(a) = 0} ⊂ C of C of algebraic numbers is also an
algebraically closed field.

Theorem 10.1. If F is an algebraically closed field, then the irreducibles in F [x] are exactly the poly-
nomials of degree 1, so each irreducible is associate to (x− a) for a unique a ∈ F .

10.1 Eisenstein’s Criterion
It is difficult to check polynomials in Z[x] for irreducibility, but Eisenstein’s criterion provides an sufficient
(but not necessary) condition for irreducibility that is often simpler to use.

Let R be a UFD. Then, note that if a non-constant polynomial f ∈ R[x] is irreducible, its coefficients
need to be jointly coprime, as, if a is a non-unit in R that divides all the coefficients of f , then a is a
non-unit in R[x] that divides f .

A non-zero polynomial f = anx
n + · · ·+ a1x+ a0 ∈ R[x] is primitive if gcd0≤i≤n(ai) = 1.

So, any non-zero f ∈ R[x] can be written as af0 where a ∈ R is the gcd of the coefficients of f and f0 is
primitive.

Theorem (Eisenstein’s Criterion). Let R be a UFD, and let f = anx
n+· · · a1x+a0 ∈ R[x] be a primitive

polynomial. If there exists a prime p ∈ R such that,

• p ∤ an;

• p | ai for 0 ≤ i < n;

• p2 ∤ a0,

or,

• p2 ∤ an;

• p | ai for 0 ≤ i < n;

• p ∤ a0,

then f is irreducible in R[x].

Example. 3x3 + 10x2 + 12x + 2 is irreducible in Z[x] as gcd(3,10,12,1) = 1, and Eisenstein’s criterion
applies with p = 2.

10.2 Fields of Fractions
Let R be an integral domain, and define the set,

W = R× (R \ {0})
= {(x,y) ∈ R×R : y ̸= 0}

We define an equivalence relation on W by (a,b) ∼ (c,d) if and only if a · d = b · c. Then, the equivalence
classes of an element (a,b) is called a fraction, and is denoted a

b .

Let Q(R) be the set of equivalence classes of W .
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Theorem 10.2. If R is an integral domain, then Q(R) is a field under the operations,

a

b
+
c

d
=
a · d+ b · c

b · d
a

b
· c
d
=
a · c
b · d

and the map π : R→ Q(R) defined by r 7→ r
1 is an injective ring homomorphism.

The field Q(R) is called the field of fractions of an integral domain R.

Example.

• Q(Z) = Q

• Q(F [x]) is the field of rational functions p/q, p,q ∈ F [x],q ̸= 0, in one variable x, commonly denoted
by F (x).

10.3 Gauss’ Lemma
Lemma 10.3. The product of two primitive polynomials is primitive.

Theorem 10.4. Let R be a UFD with a field of fractions Q = Q(R). Then, a primitive polynomial in
R[x] is irreducible if and only if it is irreducible in Q[x].

Lemma 10.5 (Gauss). A primitive irreducible polynomial in Z[x] is irreducible in Q[x].

Corollary 10.5.1. If R is a UFD, then there are two distinct types of irreducibles in R[x]; irreducible
elements in R, and primitive elements in R[x] that are irreducible in Q[x].

Theorem 10.6. If R is a UFD, then so is R[x].
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